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Standard Young tableaux and character generators of 
classical Lie groups 
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Mathematics Department, University of Southampton, Southampton, SO9 5NH, England 

Received 22 March 1983 

Abstract. Character generators are derived for each of the classical groups SU(k) ,  
SO(2k + l) ,  Sp(2k) and SO(2k) .  In order to do this, use is made of various generalisations 
of standard Young tableaux. One set of these is in one-to-one correspondence with the 
contributions to the characters of each irreducible representation and the other, involving 
shifted Young diagrams, provides a means of enumerating those maximal chains in the 
fundamental posets of each group which serve to generate, via their descent subchains, all 
possible multichains. The character generators are then written down in terms of a suitable 
labelling of the poset elements. Illustrative examples are given. 

1. Introduction 

It is well known that the character of the irreducible representation ha of the compact 
semi-simple Lie group G having highest weight A = ( A l ,  A 2 , .  . . , A k )  is given by the 
formula due to Weyl (1926): 

where 4 = (&, q5*, . . . , &)  specifies the conjugacy classes of G, 6 is half the sum of 
the positive roots of the Lie algebra corresponding to G and the summation is carried 
out over all the elements S of the Weyl group WG of G. 

The character generator for such a group G is defined by 

Interest in such generating functions has recently been stimulated by Patera and Sharp 
(1 979) who showed that they could be used, not only to express characters of irreducible 
representations in the form 

where w = ( w l ,  w2,  . . . , wk) is a weight vector of G and M i G  is the multiplicity of 

t Permanent address: Mathematics Department, Helwan University, Cairo, Egypt. 

0305-4470/84/’010019+27$02.25 0 1984 The Institute of Physics 19 



20 R C King and N G I El-Shurkaway 

this weight in the irreducible representation AG, but also to determine further generating 
functions such as those associated with group-subgroup branching rules and the 
decomposition of tensor products. 

Although the generating function (1.2) for characters may be constructed using 
Weyl’s character formula (1 .1)  this leads to considerable overcounting with mutual 
cancellations of unwanted terms. It is desirable to express the character generator 
(1.2) as a sum of positive terms. 

In the case of the group SU(k)  this was done by Stanley (1980) using a method 
which has as its key element the description of characters of SU( k) in terms of standard 
Young tableaux: 

~ “ ’ ( 4 )  = 1 exp ( iw +), (1.5) 

where the summation is carried out over all standard Young tableaux 9’’ and w is 
the weight vector corresponding to PA’. 

In this paper it is this method which is extended to cover the remaining classical 
groups SO(2k + l ) ,  Sp(2k) and SO(2k). Preliminary statements of the results for 
Sp(2k) (King 1981) and for SO(2k) and S 0 ( 2 k +  1 )  (King and El-Sharkaway 1982) 
have been given elsewhere. In order to establish the validity of the results it is necessary 
to give a complete description of the characters of irreducible representations of these 
groups in terms of various types of standard Young tableaux. This has recently been 
done (King and El-Sharkaway 1983). The crucial result takes the form 

x ‘ ~ ( 4 )  = 2 p ~  exp (iw * 4)  (1.6) 
TAG 

where the summation is carried out over all the standard Young tableaux T’G, w is 
once more the weight vector of T’G and PG is a duplication parameter required only 
when dealing with the groups S 0 ( 2 k +  1) and SO(2k). 

Unfortunately pG depends not only upon G but also upon T‘G so that for the 
purpose of deriving the character generator (1.2) it is convenient to introduce aug- 
mented standard Young tableaux T:G which, it will be shown, enable (1.6) to be 
replaced by 

x ^ G ( + ) =  exp(iw - +). (1.7) eG 
This result is derived from (1.6) in 0 2, which includes the precise definition of the 
augmented standard Young tableaux T:G of each irreducible representation AG of 
each classical group G. 

As stressed by Baclawski (1983) the standard Young tableaux associated with 
certain elementary representations of SU(k) form the elements of a finite partially 
ordered set (poset). The importance of this poset is that its multichains define all 
possible standard Young tableaux whilst its maximal chains provide a means of 
generating this complete set. Baclawski also described the corresponding poset for 
Sp(2k). Here, in 0 3, these posets and similar posets for both SO(2k) and S 0 ( 2 k +  1 )  
are specified. 

In 0 4 these posets, associated with the column structure of the augmented standard 
Young tableaux of each of the classical groups, are then depicted diagrammatically, 
in low rank cases, in a Cartesian framework. The purpose of this is to illustrate that 
the edges of the diagram may be labelled so as to provide a geometric interpretation 
of the shifted Young tableaux introduced by Stanley (1980) in the case of SU(k).  A 
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similar geometric interpretation is given of the shifted Young tableaux (King 1981, 
King and El-Sharkaway 1982) appropriate to the other classical groups. In each case 
the shifted Young tableaux serve to specify the maximal chains of the corresponding 
poset from which all possible multichains may be generated. 

These are then used in Q 5 to derive the character generators (1.2) for each of the 
classical groups. The results are discussed in § 6 which includes some illustrative 
examples in which the character generator is expressed as succinctly as possible. 

2. Augmented standard Young tableaux 

The inequivalent irreducible representations A G  of the classical groups G may be 
labelled by 

{A} w i t h p s  k -1  
[ A ]  and [A; A ]  with p s k 
( A )  with p s k 
[ A ]  with p s k - 1, [A], with p = k and [A; A]* with p G k 

for SU( k )  
for SO(2k + 1) 
for Sp( 2 k )  
for SO(2k) 

where A = ( A l ,  A 2 , .  . . , A, O,O,. . . ,0)  has k components, the first p of which are 
integers such that A l  2 A 2  2. . .a Ap > 0. 

The highest weights A = ( A 1 ,  A 2 , .  . . , Ak) of these irreducible representations A G  
are such that 

for {A}, [ A ]  and ( A )  

A i  = A i  for 1 s i s k ,  
for [ A I ,  

Ai f o r l s i s k - 1  
= {*A, for i = k ,  

for [A; A ]  

AI = A i  +$ for 1 s is k, 

and for [A; A], 

A i  +; for 1 s is k -  1 
for i = k. 

This notation is used elsewhere (King and El-Sharkaway 1983) to motivate the 
construction of various Young diagrams. Just as A specifies a Young diagram F A  
consisting of p rows of boxes, of lengths A l ,  A 2 , .  . . , A, left adjusted to a vertical line, 
so A ;  A specifies a Young diagram FA'" formed by adjoining a column of half boxes 
of length k to the left of F". 

Furthermore (King and El-Sharkaway 1983), standard Young tableaux T A  and 
TA;" may be formed by inserting in the boxes and half-boxes of the diagrams F A  and 
FA'" various entries taken from some totally ordered set, S,  subject to certain rules 
which depend upon the group under consideration. In the case of the groups SU( k) ,  
S 0 ( 2 k + l ) ,  Sp(2k) and SO(2k) the requisite sets, S,  are: 

(2 . la ,  b) 

(2.lc,  d )  

s, ={l ,  2 , .  . . , k} 

sc ={i, I , ? ,  2 , .  . . , E, k }  

S,={i ,  1 , 2 , 2 , .  . . , E,  k , O }  

s D = { i , 1 , Z , 2 , .  . . , E, k } .  
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The total ordering of the elements in these sets is defined by 

i<  1 < 2 < 2 . .  . < F <  k < o .  

If the number taken from the appropriate set S and entered in the box or half-box 

v ( i , j ) a v ( i , j - l )  for i 2 1 and j 2 2 (2.3) 
of the ith row and jth column of F A  or FA’A is v( i , j )  then in all cases 

v(i, j )  > v( i  - 1, i) f o r i a 2 a n d j 2 1 .  (2.4) 

These rules suffice for the entries in the standard Young tableaux of SU(k), but 
additional rules are required for the other groups. In particular for SO(2k f l ) ,  Sp(2k) 
and SO(2k) - 

(2.5) v(i, 1) 2 i for T A ,  

whilst for S 0 ( 2 k +  1) and SO(2k) 

and 
v(i, 1) = Tor i for (2.6) 

v ( i , l ) = T a n d  v ( i , j ) = i  implies v ( i - l , j ) = T f o r  T A  and TA’A. (2.7) 
with 

entries v ( i ,  j ) ,  by introducing augmented standard Young tableaux T: and T t s A ,  with 
entries v(i,j)E(,.,l, where the subscripts &(i , j )  are taken from the set 

It is convenient to generalise these standard Young tableaux T A  and 

s , = { i , i , o }  (2.8) 

equipped with the partial ordering 
- 
1 < O  and 1 < O .  

For both SU(k) and Sp(2k) 

(2.9) 

E ( i, j )  = 0, (2.10) 

whilst for both S 0 ( 2 k +  1) and SO(2k) 

if 7 ( i ,  j )  = i and 71 ( i  - 1, j )  z r I’ 
if v ( i , j ) =  r 
if q(i, j )  = i and v( i -1, j )  = r 1 or i E ( i ,  j )  = (2.11) 

l o  i fq ( i , j )+  Tori. 
In augmenting the entries v( i , j )  with these subscript E(i,j) it is required that: 

Thus in any row the subscripts are either all 0, qr a sequence of 1’s followed by 0’s 
or a sequence of T’s followed by 0’s. 

In general these rules are such that each TA;A determines a unique Tt”’. However, 
each T A  may determine more than one T:. For example if 

E(i, j )  2 E ( i ,  j -  1) for i a  1 a n d j 3 2 .  (2.12) 

~ ( A ; 5 3 1 ~ )  = i/i a 4 then ~ $ ; 5 3 1 ~ )  = l i / i i  - I?o 5, 
213 4 5 21/30 40 50 
3/ 3 31/37 

41 ai/ 

51 5 , /  
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40 
47. 

Similarly if 

T ( 1 5 )  = then TI’” = 1 1  or l1 with U = +1 

3 30 30 

3 31 3i 

5 50 5, 
5 51 5 i  

3 0  30 

31 3i 

50 5 0  

5 i  51 

or T!~’) = 1 1  or l 1  with cr = -1 

where a signature parameter cr has been introduced for later convenience. The 
signature takes value +1 or -1 according as the number of entries augmented by the 
subscript in the first column of the tableau, whether T: or T t i A ,  is even or odd 
respectively. Thus 

(2.13) 

These duplications are precisely what is required to enable the character of each 
irreducible representation A G  of the classical group G under consideration to  be 
expressed in the form (1.7).  Each of the augmented standard Young tableaux T ~ G  
associated with hG contributes the single term exp(iw - 4)  to x ‘ G ( ~ )  where the weight 
vector w = ( w l ,  w 2 , .  . . , wk) is determined by the entries ~ ( i ,  j )  of Ttc. In fact (King 
and El-Sharkaway 1983), 

w . = n  1 1 1  - n -  f o r i =  1 , 2 , .  . . , k (2.14) 

where 

for Tt  
(2.15) 
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for each entry e taken from the appropriate set S. The augmented standard Young 
tableaux Tto associated with each particular irreducible representation AG are 

for {A}, [ A ]  and (A) 
T ~ G  = TA 

E 7  

for [AIi.  

for [A; A ]  

T ~ G  = T A  with (T = * l ,  

= T A ; A  
E E ,  

and for [A; A]* 

T ~ G  = TA;” with (T = *l. 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

3. Fundamental posets of the classical groups 

The fact that standard Young tableaux may be used to express the characters of 
irreducible representations of SU( k) in the form (1.5) was the basis of the determination 
by Stanley (1980) of the character generator of this group. His technique made use 
of the column structure of these tableaux. This idea was exploited by Baclawski (1983) 
in extending the results to the case of the group Sp(2k). This extension was possible 
because the duplication parameter PG, appearing in (1.6); vanishes if G is Sp(2k). In 
generalising these results still further to the remaining classical groups SO(2k) and 
SO(2k + 1) it is merely necessary to make use of the augmented standard Young 
tableaux introduced in the previous section. 

Following the procedure of Baclawski the first step is to introduce the fundamental 
posets A(k-1),  B ( k ) ,  C ( k )  and D ( k )  of SU(k), S 0 ( 2 k + l ) ,  Sp(2k) and SO(2k) 
respectively. The poset elements are the augmented standard Young tableaux associ- 
ated with the following elementary irreducible representations of these groups: 

{ l p } w i t h l s p s k - l  for SU( k )  

[lP] with 1 S p S  k 
(lP) with 1 S p S  k 

[lP] with 1 “ p  s k - 1 and [l k]a 

fo rS0(2k+1)  

for Sp(2k) 

for SO(2k). 

For example the posets of the low rank groups are given by: 

SU(2) A(1) =U, 21 

(3.1) 
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i - , i + , 2 , 2 , i - , i - , i  , I  , 2  , 2  - - } .  2- 2, 2- 2, 2- 2, 
s o ( 4 )  D(2)  = 

In displaying these posets the subscripts E ( i ,  j )  of value ]; and 1 have, for typographical 
convenience, been denoted by - and + respectively, whilst those of value 0 have been 
omitted altogether. 

The elements of the posets are in one-to-one correspondence with the contributions 
to the characters of the elementary irreducible representations. Hence the number of 
elements in each poset may be expressed in terms of the dimensions of these representa- 
tions. Since these dimensions are given by: 

(3 d,{lP} = d,[lp] = (3.3a) 

d,( 1 ”) = d,{ 1’) - d,{lp-2) (3.3b) 
and 

it follows that 

k 

IB(k)l= C d2k+l[lP]=22k-1 (3.5) 
p = l  

and 

(3.7) 

These results are a generalisation to S 0 ( 2 k +  1) and SO(2k) of those given earlier by 
Baclawski (1983) for SW(k) and Sp(2k). 

The partial ordering applying to each poset is such that if x and y are elements of 
the poset then x < y if and only if xy is a two column augmented standard Young 
tableau formed by the juxtaposition of the single column augmented standard Young 
tableaux x and y .  

The graph of each poset may then be obtained by associating a vertex, labelled by 
x, with each poset element x, and associating an edge with each pair of poset elements 
x and y such that x < y and such that there exists no poset element z for which x < z < y. 

In each case the graph may be realised very conveniently in a Cartesian framework 
with the poset element x placed at the point 

k 

r ( x ) =  ri(X)ei, (3.8) 
i = l  
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where ei for i = 1 , 2 , .  . . , k are a set of mutually orthogonal unit vectors and where 
ri(x) is determined for each of the groups under consideration by: 

r i ( x )  = k + 1 - j 

2k + 2 - 2 j  

2k + 2 - 2 i +  S 

2k+  1 - 2 j  
2k + 2 -  2j  

r i (x)  = 

[ 2k+  1 -2j  
2k + 2  - 2j  
2 k + l - 2 i  

r r (x )  = 

( 2 k +  1 - 2 i +  6 

if xi = j with j 2 i (3.9) 

i f x i = j w i t h j > i  
if xi = ;with j >  i 
if xi = i+ (3.10) 
if xi = i- or i- 
if xi = 0 

i f x i = j w i t h j 2 i  
if xi = ywith j 3  i 

- 

if x, =;with j >  i 
if xi = j with j >  i 
if x, = i, 
if xi’= i- or i- 

- 

(3.11) 

(3.12) 

(3.13) 

is the entry in the ith row of the single column augmented standard Young tableaux 
x. If there is no such entry, that is to say i > p where p is the length of the column 
constituting x, then 

r i ( x )  = O  for i > p. (3.14) 

The parameter S in (3.10) and (3.12) is a small positive number sufficient merely to 
separate otherwise coincident elements in the graphs of the corresponding posets. 

The Cartesian realisations of the posets of the low rank groups are displayed in 
figures 1-4 with the subscripts E(i, j j  omitted for convenience. 

The manner in which the posets are defined makes it clear that there is a one-to-one 
correspondence between the multichains (xl, x2, . . . , xq)  with x1 S x2 S .  . . s xq and the 
augmented standard Young tableaux T t  with A I  = q. This comes about through the 
identification of T: with the juxtaposition of its columns xl, x2,. . . xT Generalising 
this idea slightly the multichains (x:”, x2, . . . , x q + l )  with x1 S x2 S .  . . s xq+l, where 
x;” is an augmented standard Young tableau of type T t ,  are in one-to-one correspon- 
dence with the augmented standard Young tableaux T;;* with A l  = q. This generalisa- 
tion of the notion of multichain is necessitated by the fact that in selecting the elementary 
representations whose augmented standard Young tableaux defined the elements of 
the fundamental posets, the fundamental spin representations A and A* of S 0 ( 2 k +  1) 
and S0(2k) ,  respectively, were omitted. Allowing half-elements, x:”, of posets to 
appear in multichains provides the missing augmented standard Young tableaux of 
these spin representations. This establishes the one-to-one correspondence between 
the multichains of the fundamental poset of each classical group G and the augmented 
standard Young tableaux TtG for all irreducible representations A G  of G. 
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Figure 1. Fundamental posets A(  k - 1) of SU(k) for k = 2, 3, 4. 

4. Maximal chains and shifted Young tableaux 

It is convenient to add to each poset P(k) a greatest element f l  corresponding to an 
empty tableau, containing no boxes or half-boxes and therefore no entries. This 
element is such that: 

x < f 1  for all x E P( k )  (4.1) 

and in the graph of this poset the Corresponding vertex is to be placed at the origin, 
so that 

r ( f , )  = 0. (4.2) 
For each poset P( k) there exists a set of maximal chains c = (xl, x2, . . . , x,) with 

x, E P( k )  for a = 1,2 ,  . . . , m such that there is no element z E P( k )  satisfying any one 
of the following conditions 

z<x1 (4.3) 
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sol51 BIZ1 

iff---?Y--- 
0 0  liw; 

e1 
4 - 1  

Figure 2. Fundamental posets B( k )  of SO(2k + 1 )  for k = 1, 2, 3. 

or 

x, < 2 < X a + l  for a = 1 , 2 , .  . . , m (4.4) 

with 

xm+l = $1. (4.5) 

In passing along a maximal chain c from xu = x to x,,~ = y for a = 1,2 ,  . . . , m the 
constraint that there exists no z satisfying (4.4) is such that the edge joining x to y in 
the graph of the poset may be labelled unambiguously by 

if r ( x ) - r ( y )  = e j  
if r ( x )  - r( y )  = ( 1 + S)ei, 

(4.6) 

where use has been made of the notation of (3.9)-(3.12) and (4.2). 
The labelling is thus a map from the edges of the graph to the set: 

s={i, 1 , 2 , 2 , .  . . , E, k } .  (4.7) 
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Figure 3. Fundamental posets C(k)  of Sp(2k) for k =  1, 2, 3. 

The importance of such a labelling is that it enables a Yamanouchi symbol Y ( c )  to 
be associated with each maximal chain c = ( x l ,  x2, . . . , x,) through the definition: 

(4.8) 

(4.9) 

Y ( c )  = Y l ( c )  Y ~ ( c )  * * . Y m ( C ) ,  

Ya (C)=A(xa ,  rat11 

with 

for a = 1 , 2 , .  . . , m. 

Since r (x ,+ l )  = r (&)  = 0 it follows from (4.6) and (4.7) that if the sequence. 

Ya(C) Yu+l(c) . . . Y m ( c )  (4.10) 

contains a total of y i ( x a )  entries i and yr (xa)  entries T then 

ri(xa) = yi(xa) + y r ( x u ) ( l +  8 )  (4.11) 

for i = 1 , 2 , .  . . , k and Q = 1 , 2 , .  . . , m. These parameters are just the components of 
r ( x )  for x = xa. This indicates that the poset is graded in the sense that if x is any 
element of the poset and c = (xl, x2,. . . , x,) is any maximal chain in the poset 
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I 

i 
3 

1 
2 

61i 

i 

Figure 4. Fundamental posets D ( k )  of SO(2k) for k = 1, 2, 3. 

containing x then x = xu for 

a = m - u + l  

where U is the grade of x. 
With this notation it is then convenient to introduce: 

pi ( a )  = ri ( ~ 1 1 6  =O = yi ( x m  1 + Y ;(xu 1, 
so that 

k 
C p i ( a ) = a  

i = l  

and, by virtue of (3.9)-(3.12), 

pi(a)> pi+l (a)>O for i = 1,2 ,  . . . , p - 1 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

with each p i ( a )  an integer for i = 1 , 2 , .  . . , p.  Thus, associated with each poset element 
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xwithagradingspecifiedbya,thereexistsapartitionp(a) = ( p l ( a ) , p 2 ( a ) ,  . . . , p,,(a)) 
of U into p unequal parts, where p is the length of the single column augmented 
standard Young tableaux constituting x. 

Each such partition p = ( p I ,  p2, . . . , p,) of m into p unequal parts defines a shifted 
Young diagram G” consisting of m boxes arranged in p rows of length pl, p 2 , .  . . , pm 
left adjusted to a diagonal line. Thus G” may be obtained from the conventional 
Young diagram F’ by shifting the boxes in the ith row i - 1 steps to the right. For 
example: 

Corresponding to each shifted Young diagram G” consisting of m boxes there 
exist g” restricted standard shifted Young tableaux 2” obtained by inserting the 
integers 1 , 2 , .  . . , m into the boxes of G” without repetition and in such a way that 
the entries increase across each row from left to right and down each column from 
top to bottom. Denoting the entry in the box of the ith row and jth column of G” 
by T (  i, j )  then 

77(i,j) = 77(k, 0 (4.16) 

di, j )  d i ,  i- 1) for 1 s i‘j (4.17) 

if and only if (i, j )  = (k,  I )  

(4.18) 

~ ( i ,  i) E {1,2,  . . . , m ) .  (4.19) 

The number of restricted standard shifted Young tableaux 2” has been determined 
by Thrall (1952) and may be expressed in the form (Macdonald 1979, p 135) 

(4.20) 

where J ( p )  is the product of the supplemented hook lengths associated with each box 
of G”. The supplementation involves adding pi+1 boxes to the ith column of G” for 
i = 1 , 2 , .  . . , p - 1. For example 

g ‘ 6 3 2 ’ = l l !  9 8 6 5 2 1=154 1. 5 3 2  

where the supplementation has been indicated by the inclusion of dots. 

that for each possible xl, CY = 1 and the grade a of x1 is m where: 
Returning to the maximal chains c = (xl, x2,. . . , x,) of each poset it is easy to see 

[ 4( k - 1) ( k + 2) for SU( k) ,  
m ={ k ( k + l )  

k ( k + l )  
for SO(2k + l),  
for Sp( 2 k) ,  (4.21) 

( k  for SO(2k). 
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( k , k - 1 , .  . . , 2 , 0 )  
(2k, 2k-2 , .  . . , 2 )  
(2k, 2k-2 , .  . . , 2 )  
(2k-1 ,2k-3 , .  . . , 1 )  

for SU( k ) ,  
for S0(2k+  l ) ,  
for Sp(2k), 
for SO(2k). 

(4.22) 

Just as standard Young tableaux T A  and TAiA have been generalised by introducing 
augmented standard Young tableaux T t  and Tt;" ,  so restricted standard shifted Young 
tableaux Zp may be generalised by introducing augmented restricted standard shifted 
Young tableaux Zr. This augmentation, as before, involves replacing the entries T(i,  j )  
by T(i,  j ) 8 ( i , j )  with E ( i ,  j )  =0, or 1. 

For both SU( k )  and Sp( 2 k )  

E (  i, j )  = 0,  (4.23) 
whilst for SO(2k + 1) 

if j # 2 k - i + l  
if j = Z k - i + l  

and for SO(2k) 
if j # 2k - i 
if j = 2k - i. 

(4.24) 

(4.25) 

This augmentation is just sufficient to distinguish all possible distinct x1 in each 
maximal chain c = (xl, xz, . . . , x m ) .  The only entries of Zr'" which have E ( i ,  j )  # 0 
are those at the extreme right-hand end of each row, and then only in the case of 
SO(2k + 1 )  and SO(2k). The entries for which ~ ( i ,  j )  = are in one-to-one correspon- 
dence with those x1 for which r , ( x l ) ,  as given by (3.10) and (3.12), contains 8, and 
correspondingly with those Yamanouchi symbols (4.8) which contain by virtue of 
(4.6). 

It is clear that quite apart from this duplication of tableaux signified by the presence 
of rather than i, the Yamanouchi symbols (4.8) serve to specify each standard 
restricted shifted Young tableaux Zp(m).  This comes about because reading each 
sequence (4.8) from right to left gives the labels of the rows, i, of Z'(m) containing 
the entries 1 , 2 , .  . . , m taken in turn. This is entirely analogous to the use of 
Yamanouchi symbols to specify standard restricted unshifted Young tableaux (Hamer- 
mesh 1962). 

It thus follows that the maximal chains c of each poset under consideration are in 
one-to-one correspondence with the augmented restricted standard shifted Young 
tableaux Zr'm), with the partitions p ( m )  defined by (4.22) for each of the classical 
groups. The total number of such tableaux, and hence the total number of maximal 
chains of each poset, is given by 

[$k(k+l)]!  k- l  i !  n- for SU(k), (2k-1)!  i Z l  ( 2 i - l ) !  
2k[k( k + l)]! k - l  i! rI- 

IT/..\ - (2k)! i = l  ( k  + i)! 

2 k [ k 2 ] !  k - 1  i! 
(2k-1)!  i = l  ( k + i - l ) !  n for SO(2k) 
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The factors of 2k appearing in (4.26) are a direct result of the fact that for both 
S 0 ( 2 k + l )  and SO(2k) there exist 2k possible first elements x1 in maximal chains 
c = (xl, x2,. . . , xm) .  In fact x1 is an augmented standard Young tableau T:lk) consisting 
of a single column of length k. In each case the tableau Z!$” corresponding to c is 
characterised by a signature vector U = (ul, uz, . . . , uk) with 

1 if E (  i ,  j )  = 0 or 1 for all j 
-1 if E ( i ,  j ) = i f o r s o m e j  (4.27) 

for i = 1 , 2 , .  . , , k. The signature itself is then defined by 

k 
u = n  ui. (4.28) 

With this definition the signature U of Z:‘” coincides with the signature U of TYk) = xl 
defined by (2.19) if x1 is indeed the first element of the maximal chain c corresponding 

These ideas on maximal chains c, Yamanouchi symbols Y ( c )  and augmented 
restricted standard Young tableaux Z f m )  may be illustrated through a consideration 
of figure 5 in which are displayed the posets C(2) and D(2) associated with Sp(4) and 
S0(4) ,  respectively. The corresponding graphs are labelled, and in each case a maximal 
chain c is indicated. 

i =  I 

to z:‘”. 

In the case of Sp(4) the maximal chain is defined by 

i i i i 2 2  
2 2 2  

c =  - (4.29) 

Figure 5. Examples of maximal chains for Sp(4) and SO(4). 
For Sp(4) c =  i i 1 1 2 2, Y ( c ) = 2  1 2 1 1 1 ,  d ( c ) = l  

2 2 2  2 

2- 2- 2- 2- 
for s o ( 4 )  c = i- - Z Z 2, Y ( c ) = i  Z 1 1, d ( c ) = i -  - Z 
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for which 

Y ( c ) = ~  1 2  1 1 1 and Z:(")=1 2 3 5 
4 6  

with 

(4.30) 

For SO(4) the maximal chain is defined by 

i - 2  Z 2 
2- 2- 

c = -  

for which 

Y ( c )  = T 2 1 1 and Zr(,) E = 1 2 4  
5 

with 

(4.32) 

(4.33) 

p ( m )  = ~ ( 4 )  = (3,1).  (4.34) 

a = ( a , , a z ) = ( - l : - l )  and a = l .  (4.35) 

In this case 

In (4.30) and (4.33) it has been convenient to write v(i, j ) E ( , , , )  as ~ ( i ,  j )  for &(i, j )  = 0 
or 1 and as v( i , j )  for E ( i , j ) = i .  

It is worth pointing out that each Yamanouchi symbol Y ( c ) ,  (4.8), defines a 
sequence of partitions p ( a )  for a = 1 , 2 , .  . . , m through (4.13). Each such partition 
p ( a )  determines the shape of that part of the corresponding tableau Z'1'''" obtained 
by deleting all but the first a entries 1 or 1, 2 or 2 .  . . a or (1. 

In examples (4.30) and (4.33) these sequences of partitions are therefore: ( l ) ,  (2), 
(31, (3,1),  (4,1),  (4 ,2)  and (11, (21, (2,1),  ( 3 , l )  respectively. 

5. Generating functions 

The augmented restricted standard shifted Young tableaux are of course simply a 
combinatorial device for enumerating all possible maximal chains c in each fundamental 
poset. The maximal chains define through the juxtaposition of their elements xl, 
x2,. . . , x, those augmented standard Young tableaux whose columns are all distinct 
and whose first row has length m. To obtain all possible augmented standard Young 
tableaux it is necessary to generate the corresponding multichains m. 

Each maximal chain c is not only devoid of repetitions amongst its elements but 
also unrefinable in the sense that there is no element z satisfying (4.3) or (4.4). In 
the case of a multichain m both of these conditions may be violated. However, as 
pointed out by Baclawski (1983) in the case of the posets of SU(k) and Sp(2k), 
associated with each multichain m there exists a unique maximal chain c. In generalising 
this result to the posets of SO(2k + 1) and Sp(2k) it is necessary to overcome a slight 
complication: namely that of the lack of uniqueness of the first element x1 of a maximal 
chain c = (xl ,  x2,. . . , x,,,). For both SU( k )  and Sp(2k) this element x1 is unique, but 
for both SO(2k + 1) and Sp(2k) there are a total of 2k possible first elements x1 of 
grade m. 
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In order to cope with this difficulty it is worthwhile bounding the posets by the 
introduction not only of a greatest element f, as in (4.1) but also of a least element 
fo such that 

i " < X  for all x E P( k ) .  (5.1) 

The position vector of this element is not important but it is important to label the 
edges joining f, to each element x1 of grade m by 

A(.&, XI) =O. (5.2) 

Corresponding to each maximal chain c = (x,, x2,. . . , x,) there exists a descent 
subchain d ( c )  consisting of those elements xa of c such that 

A(x,-], x,) = y , - , ( c j  < Y, (c )  = w,, x,+,) (5.3) 

for cy = 1 , 2 , .  . . , m with xo = f, and xm+, = P I .  The ordering imposed on the values 
of the labels A(x, y) is defined, not by (2.2), but by: 

E > .  . . > Z > i > O >  k > .  , . > 2 > 1 .  (5.4) 

(5.5) 

The descent set of c is then defined by 

D ( c ) = { a :  a = m - a + l  with Y , - , ( c ) <  Y , ( c ) ) .  

Extending the Yamanouchi symbol Y ( c )  of (4.8) by the introduction of a zeroth 
component Y o ( c )  = 0, the examples (4.29) and (4.32) yield by way of illustration 

Y ( c ) = O  2 1 2  1 1 1 D ( c )  ={4) d ( c )  = 1 (5.6) 
2 

and 

respectively. 
The same descent set (5.5) may be identified directly from the corresponding 

tableaux ZLm) by noting that a is in D ( c )  if and only if either a - is in the ith row and 
a + 1 is in the jth row for some j <  i, or d is in the ith row and a + 1 is not in the jth 
row for any j >  i. 

Thus for example from (4.30) and (4.33) the tableaux 

indicate once more that 

J Y C )  = (4) and m c )  = {3,4)  (5.9) 
respectively, as in (5.6) ana (5.7). 

The maximal chain c corresponding to the multichain m = (xl, x2,. . . , x,) is 
constructed by including in c all the distinct elements of m and interpolating additional 
elements, if required, in the form of the unique unrefinable subchains between succes- 
sive elements xo, xl, x2,. . . , x,, x,,, with no = fo and x,+~ = f,. Such an interpolation 
is necessary between x, and x,,, and j = 0, 1 , 2 , .  . . , q if there exists any z in the poset 
such that xl < z < x,,,. The subchain sl = (x,, x ~ + ~ ,  . . . , x p )  interpolated between xi 
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and is the unique subchain satisfying the conditions: 

A ( X j - 1 ,  x,) = Y,-1 2 Y ,  = A (X-,, x,+1) (5.10) 

for ?=a, a + l , .  . . , p  with xu-,  =xi and 
For j > 0 the uniqueness of this subchain is established by making use of the fact 

that (4.11) applied to r i ( x j ) -  r i ( x j + l )  determines the number of the labels Y,  equal to 
? or i. Arranging all such labels in descending order, as determined by (5.4), gives 
the required sequence 

Y,-l Y,Y,+l* * Yo, (5.11) 

which fixes the subchain sj completely. 
For j = 0 interpolation is only necessary if the first element xl of the multichain m 

is not of grade m. In this case the first interpolated element x, of so = (xu ,  x,+~, . . . , xo) 
must be chosen to be the unique element of grade m such that the application of 
(4.11) to r , ( x , ) - r i ( x l )  indicates that the number of the labels Y,  equal to ? is  zero 
for all i. Arranging the other labels in descending order immediately after the initial 
label Yo-,  = A ( i o ,  x u )  = O  then yields the required sequence (5.11) with 

(5.12) 

in accordance with (5.4). The uniqueness of the corresponding subchain so then follows 
from the uniqueness of the element x, of grade m satisfying the conditions determined 

To exemplify this construction procedure recourse can be made to figure 5 once 

Y,-, > Y, > Y,,, > * . . > Yp, 

by x1. 

again. In the case of Sp(4) the multichain 

m = l  1 1  2 
2 2 2  

(5.13) 

requires interpolation before and between and 2. In the first case the Yamanouchi 
sequence (5.11) is 0 2 1 and in the second 2 1 1, so that 

and s3=1 2. i i  
s0=z2  (5.14) 

Interpolating these between the distinct elements of m yields the required maximal 
chain c of (4.29) with descent subchain d(c)  given by (5.6). 

Similarly in the case of SO(4) the multichains 

i- i - 2  2 2 
m = =  = and m = 2  2 2 (5.15) 

L- L- 
- 

require interpolation between and 2 and before 2, respectively. The Yamanouchi 
sequences (5.11) are 

0 2 1 l w i t h s , = i  2 and 0 2 1 1 wi thso=l  1 2. (5.16) 
2 

The corresponding maximal chains are 
- - -  

c = l -  1 2  2 and c = l  1 z 2 - 
2- 2 

(5.17) 
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with descent subchains 
- 
1- 
2- 

d ( c )  = - and d ( c ) =  -. (5.18) 

It is no accident that the descent subchain d ( c )  of the maximal chain c obtained 
from a multichain m is a subchain of m in each of the above examples. This is a direct 
consequence of (5.10) which ensures that no interpolated element belongs to d ( c ) .  It 
then follows that each multichain m may be generated through appropriate repetitions 
of certain selected elements of the corresponding maximal chain c including every 
element of d ( c )  at least once. Hence 

where of course 

m 

l / ( l--q)= 1 X l ' ,  
ni=O 

(5.19) 

(5.20) 

and the multichains m are formed by arranging the elements of each summand in 
increasing order. 

In order to write down the corresponding character generator, (1.2), it is merely 
necessary to make use of (1.7) and the one-to-one correspondence between augmented 
standard Young tableaux and multichains, together with a suitable labelling scheme, 
this time for the poset elements themselves. 

Each poset element x takes the form of a single column augmented standard Young 
tableau. Thus 

x = X I  with xi = q(i, l)E(i,l) for i = l , 2 , .  . . ,p. (5.21) 
x2 

Such an element has a well defined signature, a ,  and grade, a, defined by (2.13) and 
(4.12) respectively. With this notation the appropriate label may be written in the form: 

(5.22) 

where 

if l s a s m  

i f a = m  

for SU( k )  and Sp( 2 k) 
for SO(2k + 1) and SO(2k) 
for S 0 ( 2 k +  1) and S0(2k) ,  

(5.23) 

[ai if l s i < k  for SU( k) 
if l s i s k  
i f l s i < k  for SO(2k) 

for S 0 ( 2 k +  1) and Sp(2k) 
(5.24) ai( a )  = 

i f i = k  for S0(2k) ,  
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and finally, 

(5.25) 

The need for the exponent s with value in the case of S 0 ( 2 k +  1) and SO(2k) is a 
consequence of the generalisation of multichains (xl, x2,. . . , x,) to include those of 
the form (x:", x2,. . . , xqtl). This is itself necessitated by the need to generate not 
only the tableaux T: but also T t i A .  Similarly the need to incorporate the signature, 
a = f 1,  is a direct consequence of (2.17) and (2.19), which indicate those tableaux 
associated with the irreducible representations [A], and [A; A], of SO(2k). 

Incorporating this labelling (5.22) in (5.19) yields the required character generator 
(1.2) in the form: 

(5.26) 

Whilst this formula gives the character generator it is perhaps worth recasting in 
a form which enables all the terms of the formula to be written down by inspection 
of the corresponding set of augmented restricted standard Young tableaux Zf"'. The 
appropriate labels of the poset elements x are then slightly different. In fact setting 

where x has grade a and the partition k ( a )  is determined by (4.13), the character 
generator may be written in the form 

with 

(5.29) 

The notation is such that: 

~ p ( a )  = fi ai(a), (5.30) 

with % ( U )  defined by (5.241, whilst s is given by (5.23), and the signature vector 
U = (al, u2,. . . , ak) is determined from the entries in 2:"' by (4.27). For both 
SU( k )  and Sp(2 k) the signature vector has no role to play since augmentation of the 

i = l  
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tableaux is unnecessary. Hence for these groups 

X p , ( a , ( a i >  = X p ~ o ) .  

However, for both S 0 ( 2 k +  1) and SO(2k) 

(5.31) 

(5.32) X d a ) +  1 if ~ , = - 1 , p ~ ( m ) = p ~ ( a ) = p , - ~ ( a ) - 2 ( f o r  i >  1) 
otherwise. X,,da,) = X,,( (1 ) 

Finally 
(ei+k, ei4k-1, , . . , ei%, e'%) for SU( k )  

(5.33) 
(1, ei+k, , * * * ,  e-im,) for SO(2k + 1) 
(ei+k, e-'+k , * . . ,  e-i+l 1 for Sp(2k) 
(ei+,, , , , ei+z, e-'%, ei%, for SO(2k). 

This is the culmination of the programme initiated by Stanley (1980) who introduced 
standard restricted shifted Young tableaux in this context. 

6. Discussion and exemplification 

The complexities in the analysis of the previous sections are almost entirely occasioned 
by the need to introduce augmented tableaux in dealing with S 0 ( 2 k +  1) and SO(2k). 
Nonetheless it is remarkable that these groups can be encompassed both by the formula 
(5.26), first applied to SU(k) and Sp(2k) by Baclawski (1983), and by the formula 
(5.28), first applied to SU(k) by Stanley (1980) and later to Sp(2k) (King 1981). 

Whilst (5.26) is easier to use for low values of k, as k increases it rapidly becomes 
difficult to enumerate all possible maximal chains c and to determine the descent 
subchains d ( c ) .  For this reason the use of augmented restricted standard shifted Young 
tableaux in (5.28) is to be preferred in most calculations. Moreover, it lends itself to 
computer implementation through the straightforward enumeration of such tableaux. 

This task is left to other authors. Here we content ourselves with exhibiting the 
results appropriate to low values of k. The number of terms in each character generator 
is determined by the formula (4.26) for N ( c ) ,  the total number of maximal chains in 
each poset. The number of factors in the denominator of each term is given by the 
formula (4.21) for m, the length of each maximal chain. The manner in which m, 
N ( c )  and (P(k)(, the number of elements in each poset, increase with k is given in 
table 1 which extends the similar tabulation of Baclawski (1983). 

Selecting those cases for which N (  c )  < 100 the corresponding classical group 
character generators may be written down by inspection of the information displayed 
in table 2. In this table each maximal chain c has been displayed as a standard Young 
tableau T A  or TA;A along with the corresponding descent subchain d(  c ) ,  shown in the 
same way. These tableaux, which are not augmented, define the character generators 
completely. This can be seen from (5.21)-(5.26) since the only role of subscript E ( i ,  1) 
is to determine the signature U. For all groups except S0(2k) ,  U = +1, and for SO(2k) 
for all columns of length p ,  with p < k, U = +1, whilst for all columns of length k,  
a = +1 or -1, according as the number of entries in the first column of TA;A given by 

for some j ,  is even or odd respectively. It should be noted that the columns for 
which s = $ have been indicated by the use of TA'* rather than T A  with entries in half 
boxes placed to the left of the symbol /. 
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Table 1. Data on low rank posets. 

2 
6 

14 
30 

1 2 
5 
9 

14 

L 
12 

286 

3 
15 
63 

255 

2 
20 

3696 
159 629 184 

2 
6 

12 
20 

2 
9 

34 
125 

2 
6 

12 
20 

I 
5 

462 
9 916 824 

2 
8 

336 
384 384 

1 
4 
9 

16 

L 
10 
41 

162 

5 

References: 1 Patera and Sharp (1979) 4 Baclawski (1983) 
2 Stanley (1980) 
3 King(1981) 6 Gaskell (1983) 

5 King and El-Sharkaway (1982) 

Table 2. Maximal chains and descent subchains 

- 1 1  2 1 

SU(3) 123 
45 

124 
35 

-3 : 
3 :i 2 3 3  
2 1 1 2 2 3  

1 

1 

SU(4) 1234 
567 

89 

1234 
568 

79 

1235 
467 

89 

1235 
468 

79 

1236 
457 

89 

1 1  1 1  1 1 2 3 4  1 
2 2 2 3 4  

1 

- 1 3  4 

2 1 1 1 1 1 2 2 3 4  1 
4 2 2 2 3 4 4  

1 

1 3  4 

2 1 1 1 1 2 2 2 3 4  1 
3 2 2 2 3 3 4  
1 3  4 
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Table 2. (continued) 

1236 
458 

79 

1237 
458 

69 

1245 
367 

89 

1245 
368 

79 

1246 
357 

89 

1246 
358 

79 

1247 
358 

69 

SO(3) 12  

12 

SO(5) 1234 
56 

123s 
56 

1234 
56 

1234 
56 

1235 
46 

1235 
46 

1235 
46 

46 

1245 
36 

1243 
36 

1235 

~ ~ ~~~~~~ 

3 1 1 1 1 1 2 3 3 4  
4 2 2 2 3 4 4 4  

1 3  4 

2 3  1 1 1 1 2 2 3 3 4  
3 4  2 2 2 3 3 4 4  

1 3  4 

1 2 3  1 1 1 1 2 2 3 3 4  
3 3 4  2 2 3 3 3 4 4  
4 1 3 4 4  

- 1 1 1 0  

1 2 1 0  

I 2 1 0  

2 1  I z / o  

ZI l 2 , o  
0 / 2 / 0  0 

0 -1 2 / 0 0  

Z / o  I 2 / 0 0  

ZI - 1  2 / 0 0  

0 / 2 / 0  0 0 

0 0  1 2 / 0 0 0  

i / / i / o  

- 1 1 1  1 2 2 0  

T i / i i 2 2 o  

1 1  1 1 1  1 2 2 0  

i / i  i / i  i 2 2 0  

2 1 1 1  z 2 2 0  

1 i ~ T 2 2 2 0  

1 1 2  1 1 1  2 2 2 0  

I /  i i i Z Z 2 0  

2 1 1 1  2 2 2 0  

i 2  T j i Z 2 2 0  

1 

1 

1 

1 

1 

1 

1 

1 

1 

41 
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Table 2. (continued) 

1245 
36 

1245 
36 

1236 
45 

1236 
45 

1236 
45 

1236 
45 

1246 
35 

1246 
35 

1246 
35 

1246 
35 

SP(4) 1234 
56 

1235 
46 

1245 
36 

1236 
45 

1246 
35 

so(4) 123 

123 
4 

123 
a 

123 
3 

4 

1 1 2  111 2 2 2 0  
2 / 0 / 2 l O  0 0 

2 1  I 2 / 2 0  
I /  i j i 2 2  2 0  

i 1 2 2  1 1 2 2 2 2 0  

--/i 1 

-1;; i 1 2  2 

1 i i i i 2 2  

2 / 2 0  I 2 1 2 0 0  

2 I 2 2 2  

1 i i i i 2 2  

1 2  T i l 2 2 2  
2 2  I 2 2 2 2  

2 I 2 2 2  

1 

1 

+ 1  

- 1  

+ 1  

-1 

-1 

+ 1  
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Table 2. (continued) 

G Z d m )  4 c ) l c  U 

+1 

- 1  

124 
3 

124 
3 

124 
3 

-1  

124 
3 

+ 1  

To illustrate the ease with which the contribution to the character generator may 
be written down for each term displayed the following examples should suffice. 

1 2  1 1 1 1 1 2 2 3 4  
3 4  2 2 3 3 4 4  
4 I 3 4 4  

(6.1) 

where of course the second factor in the denominator can be simplified to (1 -ala;'). 
All other terms may be dealt with in the same way. For these low rank cases the 

results are not of course new. In table 1 reference has been made to those character 
generators which are already known. 

It is perhaps worth pointing out the rather trivial result appropriate to S0(2) ,  namely 

This can be rewritten as 

XS0(2)((Y, 4) =( l -a l /za- l /z  )/[I - all2 exp(i4/2)][1- a-1'2 exp(-i+/2)] (6.4) 

where it is important to note that a 1/2a-1/2 Z 1 since a and a-' should be thought of 
as two independent generating parameters. 
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The other point to note is that the local isomorphisms Sp(2)=S0(3)=SU(2) ,  
SO(5) = Sp(4),SO(4) =SU(2) X SU(2)andS0(6) = SU(4)enableachoiceofgenerating 
function to be made. That choice with the fewest terms is clearly the most desirable. 
The numbers appearing in table 1 may be used to make this choice. They make it 
clear that the only new character generator which it is feasible to write down is that 
for Sp(6). This may be done, for example, from the poset diagram in figure 3, aided 
by the enumeration of the 462 tableaux Z16s4,2). In the case of SO(7) use may be 
made of figure 2 but the result has been given very recently by Gaskell (1983). Since 
each term of (5.26) contains a single numerator factor, rather than a sum of such factors, 
the application of (5.26) to SO(7) compare favourably with the result given explicitly 
by Gaskell. However, the method of derivation used by Gaskell is not based on Young 
tableaux and may be applied to each semi-simple Lie group. It is interesting to note 
that the relevant recurrence technique is reminiscent of that used in building the Young 
tableaux in the first instance (King and El-Sharkaway 1983) so that the two methods 
may not be as unrelated as might seem to be the case at first sight. 

As a final comment it may be pointed out that each character generator can be 
re-expressed in the form: 

with 

Multiplying numerator and denominator by additional factors [1+ 1(x)] for each x 
such that / ( x i  involves s =$, enables the denominator DG(a,  4) given by (6.6) to be 
evaluated on the assumption that s = 1. It then follows from the enumeration of poset 
demands described in 0 3 that 

where the product is taken over the elementary representations A, listed in (3.1), 
d(A,) is the dimension of A, and A,O{lq} is the qth rank antisymmetrised product of 
A, In deriving this, use has been made of the fact that 

n n 

(1 -Ati) = 1 (-l)qAqeq(tl, f 2 .  . . f n )  
i = l  q = 1  

where eq is the elementary symmetric function of degree q (Littlewood 1950, Mac- 
donald 1979). Thus 

(4) = eq(t1(4)9 * * * 9 t P ( 4 ) )  (6.9) 

where t1(4), . . . , r , (+)  is the sequence, with repetitions, obtained from (5.25) by 
considering all the entries ~ ( i ,  1) in those poset elements consisting of a column of 
length p. 

This form (6.7) of the denominator is that used to great effect by Moody er a1 
(1982). Unfortunately it does not seem possible to obtain the numerator N G ( a ,  4) 
so readily. 

x A p o ( l q l  
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